A New Regularized Orthogonal Local Fisher Discriminant Analysis for Image Feature Extraction

نویسندگان

  • ZHONGFENG WANG
  • Zhongfeng WANG
  • Zhan WANG
چکیده

Local Fisher Discriminant Analysis (LFDA) is a feature extraction method which combines the ideas of Fisher discriminant analysis (FDA) and locality preserving projection (LPP). It works well for multimodal problems. But LFDA suffers from the under-sampled problem of the linear discriminant analysis (LDA). To deal with this problem, we propose a regularized orthogonal local Fisher discriminant analysis (ROLFDA) to improve the performance of LFDA. ROLFDA finds the optimal projection vectors in the range space of local mixture scatter matrix. The new local within-class scatter matrix is approximated by regularization method in order to regulate the eigenvalues of the newly local within-class scatter matrix. The projection vectors are orthogonal by utilizing the trace ratio criterion. Experimental results on the Yale, ORL and CMU PIE face databases demonstrate that the ROLFDA is an effective algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

Regularized Orthogonal Local Fisher Discriminant Analysis

Aiming at deficiencies of the ability for preserving local nonlinear structure of recently proposed Regularized Orthogonal Linear Discriminant Analysis (ROLDA) for dimensionality reduction, a kind of dimensionality reduction algorithm named Regularized Orthogonal Local Fisher Discriminant Analysis (ROLFDA) is proposed in the paper, which is originated from ROLDA. The algorithm introduce the ide...

متن کامل

Research on Feature Extraction of Mechanical Fault Based on Orthogonal Local Fisher Discriminant Analysis

The basic problem of fault diagnosis is to extract the characteristic parameters and design the decision function according to the running state signals collected by the sensors. In addition, it also can find out the fault states. Due to the complexity of the operation state of the mechanical equipment, the state signal has the characteristics of large amount of data and high degree of nonlinea...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017